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6-Hydroxy-, 6-amino- and 6-mercapto-shikimic acids have been synthesised from quinic acid and improved methods

developed for the synthesis of the 6-fluoroshikimic acids.

Previously we have described! the preparation of (6R)- and
(65)-6-fluoroshikimic acids 1 and 4t which have been con-
verted enzymatically into the enolpyruvylshikimic phos-
phates; these have been shown to be reversible inhibitors of
the enzyme chorismate synthase.? These results encouraged us
to prepare other 6-substituted shikimic acids and to improve
the routes to the 6-fluoro compounds.

The epoxide 7 was a key intermediate in our previous
synthesis and on hydrolysis (CF3CO,H-H,0-Me,SO) gave
the diol 8 (74%) which was converted into (6S5)-6-hydroxy-
shikimic acid 5% (57%) by sequential treatment with MeOH-
HCl and 5 mol -1 HCI. Selective acetylation of the diol 8 gave
the monoacetate 9 (84%) which on reaction with Et;NSF;3
gave a mixture of the 5- and 6-monoacetates of the cis-diol 27
and the (6S)-6-fluoride 12 (58% ) suggesting that neighbouring
group participation of the acetoxy function is involved in the
formation of the products. This could be avoided by reaction
of the diol 9 with ButMe,SiOSO,CF; (1 equiv.) to give the
alcohol 10 (75% ) which was converted into the (6R)-6-fluoride
11 (64%) on reaction with Et;NSF;.

The alkene 14 was also an intermediate in our previous
synthesis and on hydroxylation with OsO,~N-methylmorpho-
line N-oxide-ButOH# gave the diol 15 (89%) which was
converted (SOCI, then RuCl3-NalOy,)’ into the sulfate 18
(90%) via the sulfite 19. Hydrogenolysis, followed by dehy-
dration (Et,NSF3), gave the sulfate 20 (46% ) which reacteds-6
with NaN3;-Me,NCHO-tetrahydrofuran (THF) to give, after
hydrolysis, a mixture of the azides 22 (71%) and 23 (25%).
The azides were separated, reduced’ (Ph;P-THF then H,0),
and hydrolysed (MeOH-HCI then 5 mol 1-1 HCI) to give the
hydrochlorides of (6R)- and (65)-6-aminoshikimic acids 3 and
6 (39 and 28% respectively). Reaction of the sulfate 20 with
Buy,NF-THF gave an inseparable mixture (50%) of the
known epi-shikimic derivative 26 and a cyclohexadiene which
we were unable to identify completely.

Conversion of the quinate sulfites 19 into the shikimate 21
was unsatisfactory, but by altering the order of reactions a
satisfactory procedure was developed. Reaction of the diol 15
with Me;SiClI-Et;N-CH,Cl, gave the ether 16 which on
hydrogenolysis, dehydration {[PhC(CF3),],SPh;}8 and desily-
lation gave the diol 27 (70%). Reaction of the diol 27 with
SOCI, gave the sulfites 21 (72%) which reacted with Bun,NF
to give a mixture of mainly the unknown diene with some
epi-shikimate 26. The sulfites reacted® with NaN;-Me,NCHO
at 20°C to give a 7:2 mixture (90%) of the azides 22 and 23;
however reaction at —15°C yielded (90%) 22 and the
epi-shikimic acid azide 25 (1:3) which was stable in Me,-
NCHO at 20°C, but addition of a catalytic amount of
NaNj; converted it into the equilibrium mixture of 22 and
23. Hydrolysis of the diol 27 gave (6R)-6-hydroxyshikimic
acid 2.

Because of the complexity and unpredictability of the
substitution reactions on the previous derivatives we wished to
exercise more regio- and stereo-chemical control in the

+ In (6R)-compounds the 5- and 6-substituents are cis, in (65) trans.

i Regio- and stereo-chemistry were established by a combination of
'H NMR spectroscopy, 2D-COSY experiments, molecular modelling,
and application of the Altona equation?? to the relevant compound
and its derivatives.

synthesis of the 6-thiol derivative. It is well established that
S-thioesters are more thermodynamically stable than their
O-counterparts and that this isomerisation will occur when
mechanistically possible. In the event reaction of the diol 27
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with thiocarbonyldiimidazole-PhMe gave the S-thiocarbonate
29 (74%) directly. Hydrolysis gave crude (6R)-6-mercapto-
shikimic acid.

The successful synthesis of the (6R)-fluoro derivative 11
from 10 encouraged us to prepare the epimer 28. Reaction of
the diol 15 with ButMe,SiOSO,CF; (1 equiv.) gave the silyl
ether 17 (64%) which on treatment with NaH-CH,Cl,
underwent a trans-transesterification to form the isomer 30
(91%). Dehydration {{PhC(CF3),],SPh,} followed by
hydrogenolysis gave the alcohol 28 (78% ) which reacted with
Et,NSF; to yield the (65)-6-fluoro derivative 13 (72%). These
are now the preferred routes to the 6-fluoroshikimic acids.

Michael addition to shikimic ester 3,4-ketals occurs from
the convex face of the molecule!? and, taken together with the
greater thermodynamic stability§ of the shikimic ketals over
those of the epi-series, suggests that there must be a
stereoelectronic imperative for the unique formation of the
(6R)-epi-stereochemistry in certain substitution reactions;
this, we suggest, is an anti-SN2' reaction!! leading to a kinetic
product. Michael addition to the appropriate face of the
epi-isomers, followed by elimination to generate the more
thermodynamically stable shikimic derivatives can then occur
leading to (6R)- or (6S)-derivatives.

§ Chemical evidence and MM2 calculations support this view.
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